You are here: Home Publications Papers

Papers

List of conference papers and journal articles produced in the ParaPhrase Project
  1. M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati. Pool evolution: A parallel pattern for evolutionary and symbolic computing. International Journal of Parallel Programming, pages 1–21, 2015.
  2. M. Aldinucci, G. Peretti Pezzi, M. Drocco, C. Spampinato, and M. Torquati. Parallel visual data restoration on multi-GPGPUs using stencil-reduce pattern. International Journal of High Performance Computing Application, 2015.
  3. R. Behrends, K. Hammond, A. Konovalov, H.-W. Loidl, P. Maier, S. Linton, and P. Trinder. HPC-GAP: Engineering a 21st-Century High-Performance Computer Algebra System. Submitted to Concurrency and Computation: Practice and Experience (CPE), 2015.
  4. J. Berthold, H.-W. Loidl, and K. Hammond. PAEAN: Portable Runtime Support for Physically-Shared-Nothing Architectures. Journal of Functional Programming, 2015. (under revision).
  5. I. Bozó, V. Förd ̋os, D. Horpácsi, Z. Horváth, T. Kozsik, J. K ̋oszegi, and M. Tóth. Refactorings to enable parallelization. In J. Hage and J. McCarthy, editors, Trends in Functional Programming, volume 8843 of Lecture Notes in Computer Science, pages 104–121. Springer International Publishing, 2015.
  6. C. Brown, V. Janjic, K. Hammond, K. Idrees, C. Glass, M. A. Wafai, M. Goli, and J. McCall. Bridging the Divide: A New Methodology for Semi-Automatic Programming of Heterogeneous Parallel Machines. Computer Science: Research and Development (CSRD), 2015. (to appear).
  7. D. Castro, K. Hammond, E. C. Brady, and S. Sarkar. Structure, Semantics and Speedup: Reasoning about Structured Parallel Programs using Dependent Types. Journal of Functional Programming, 2015. (submitted).
  8. M. Danelutto, M. Torquati, and P. Kilpatrick. A green perspective on structured parallel programming. In Euromicro PDP, Special session on Energy aware computing, Proceedings of Euromicro Conference on Parallel, distributed and network based processing. IEEE Press, 2015.
  9. M. Drocco, C. Misale, G. Peretti Pezzi, F. Tordini, and M. Aldinucci. Memory-optimised parallel processing of Hi-C data. In Proc. of Intl. Euromicro PDP 2015: Parallel Distributed and network-based Processing, pages 1–8. IEEE, Mar. 2015.
  10. H. Ferreiro, V. Janjic, L. Castro, and K. Hammond. Kindergarten Cop: Dynamic Nursery Resizing for GHC. In Trends in Functional Programming (TFP 2015), 2015.
  11. D. Grzonka, J. Kolodziej, J. Tao, and S. U. Khan. Artificial neural network support to monitoring of the evolutionary driven security aware scheduling in computational distributed environments. Future Generation Computer Systems, 2015. (in press).
  12. V. Janjic, C. Brown, A. Barwell, and K. Hammond. Lapedo: Hybrid Skeletons for Programming Heterogeneous Multicore Machines in Erlang. In Preparation, 2015.
  13. V. Janjic, C. Brown, and K. Hammond. Heuristics for Mapping Patterned Applications to Heterogeneous CPU/GPU Systems. In Preparation, 2015.
  14. V. Marjanovic, J. Gracia, and C. Glass. Performance Modeling of the HPCG Benchmark. In S. A. Jarvis, S. A. Wright, and S. D. Hammond, editors, High Performance Computing Systems. Performance Modeling, Benchmarking and Simulation - 5th International Workshop, PMBS 2014, New Orleans, LA, USA, November 16, 2014. Revised Selected Papers, volume 8896 of Lecture Notes in Computer Science, pages 172-192. Springer, 2015. Held as part of SC14.
  15. M. Moniruzzaman, K. Idrees, R. M., and J. Gracia. An adaptive load-balancing task-scheduler for FastFlow. In Proceedings of the Fifth International Conference on Advanced Communications and Computation (INFO-COMP). IARIA XPS Press, 2015. accepted.
  16. D. D. Sensi, M. Danelutto, and M. Torquati. Energy driven adaptivity in stream parallel computations. In Proceedings of Euromicro Conference on Parallel, distributed and network based processing. IEEE Press, 2015.
  17. J. Stypka, P. Anielski, S. Mentel, D. Krzywicki, W. Turek, A. Byrski, and M. Kisiel-Dorohinicki. Parallel patterns for agent-based evolutionary computing. Computer Science, 2015. (in press).
  18. J. Swann and K. Hammond. Towards ’Metaheuristics in the Large’. In Proc. MIC 2015: 11th Metaheuristics International Conference, Agadir, Morocco, June 2015.
  19. F. Tordini, M. Drocco, I. Merelli, L. Milanesi, P. Liò, and M. Aldinucci. Nuchart-ii: a graph-based approach for the analysis and interpretation of hi-c data. In Proc. of the 11th Intl. meeting on Computational Intelligence methods for Bioinformatics and Biostatistics (CIBB 2014), LNBI, Cambridge, UK, 2015. Springer. To appear.
  20. F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. Liò, I. Merelli, and M. Aldinucci. Parallel exploration of the nuclear chromosome conformation with NuChart-II. In Proc. of Intl. Euromicro PDP 2015: Parallel Distributed and network-based Processing. IEEE, Mar. 2015.
  21. V. Ubarhande, A.-M. Popescu, and H. González-Vélez. Novel data distribution technique for Hadoop in heterogeneous cloud environments. In Nineth International Conference on Complex, Intelligent and Software Intensive Systems, CISIS 2015, Blumenau, Brazil, July 2015. IEEE. Accepted for publication.
  22. P. B. Vasconcelos, S. Jost, M. Florido, and K. Hammond. Type-based Allocation Analysis for Co-Recursion in Lazy Functional Languages. In Proc. ESOP 2015: 24th European Symposium on Programming, 2015.
  23. M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati. Design patterns percolating to parallel programming framework implementation. International Journal of Parallel Programming, 42(6):1012–1031, 2014.
  24. M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati. Pool Evolution: a Domain Specific Parallel Pattern. In Proc. HLPP 2014: 7th Intl. Symposium on High-level Parallel Programming and Applications (HLPP), Amsterdam, The Netherlands, July 2014.
  25. M. Aldinucci, G. Peretti Pezzi, M. Drocco, F. Tordini, P. Kilpatrick, and M. Torquati. Parallel video denoising on heterogeneous platforms. In Proc. of Intl. Workshop on High-level Programming for Heterogeneous and Hierarchical Parallel Systems (HLPGPU), 2014.
  26. M. Aldinucci, S. Ruggieri, and M. Torquati. Decision tree building on multicore using fastflow. Concurrency and Computation: Practice and Experience, 26(3):800–820, 2014.
  27. M. Aldinucci, M. Torquati, C. Spampinato, M. Drocco, C. Misale, C. Calcagno, and M. Coppo. Parallel stochastic systems biology in the cloud. Briefings in Bioinformatics, 15(5):798–813, 2014.
  28. T. Baumann and J. Gracia. Cudagrind: Memory-usage checking for cuda. In A. KnÃijpfer, J. Gracia, W. E. Nagel, and M. M. Resch, editors, Tools for High Performance Computing 2013, pages 67–78. Springer International Publishing, 2014.
  29. S. Boob, H. González-Vélez, and A. M. Popescu. Automated instantiation of heterogeneous fast flow CPU/GPU parallel pattern applications in clouds. In PDP 2014: 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pages 162–169, Torino, Italy, Feb. 2014. IEEE.
  30. I. Bozó, V. Förd ̋os, Z. Horváth, M. Tóth, D. Horpácsi, T. Kozsik, J. K ̋oszegi, A. Barwell, C. Brown, and K. Hammond. Discovering parallel pattern candidates in Erlang. In Proceedings of the Thirteenth ACM SIGPLAN Workshop on Erlang, pages 13–23, New York, NY, USA, 2014, ACM.
  31. C. Brown, M. Danelutto, K. Hammond, P. Kilpatrick, and A. Elliott. Cost-directed refactoring for parallel erlang programs. International Journal of Parallel Programming, 42(4):564–582, 2014.
  32. C. Brown, V. Janjic, K. Hammond, H. Schoner, K. Idrees, and C. Glass. Agricultural reform: More efficient farming using advanced parallel refactoring tools. In Proc. PDP 2014: 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pages 36–43, Feb 2014.
  33. D. Buono, M. Danelutto, T. D. Matteis, G. Mencagli, and M. Torquati. A lightweight run-time support for fast dense linear algebra on multi-core. In Proceedings Software Engineering: Parallel and Distributed Computing and Networks: Artificial Intelligence and Applications - 2014 PDCN’14, 2014.
  34. A. Byrski and M. Kisiel-Dorohinicki. Memetic computing in selected agent-based evolutionary systems. In Intl. Proc. of European Conference on Modelling and Simulation 2014, 2014.
  35. S. Campa, M. Danelutto, M. Goli, H. González-Vélez, A.-M. Popescu, and M. Torquati. Parallel patterns for heterogeneous CPU/GPU architectures: Structured parallelism from cluster to cloud. Future Generation Computer Systems, 37:354–366, 2014.
  36. D. Castro and K. Hammond. Skeletor: A DSL for Describing Type-based Specifications of Parallel Skeletons. In Proc. Workshop on High-Level Programming for Heterogeneous and Hierarchical Parallel Systems (HLPGPU 2014), 2014.
  37. M. Danelutto and M. Torquati. Loop parallelism: A new skeleton perspective on data parallel patterns. In Proceedings of the 2014 22Nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP ’14, pages 52–59, Washington, DC, USA, 2014. IEEE Computer Society.
  38. M. Danelutto and M. Torquati. Structured parallel programming with core FastFlow. In Central European Functional Programming School, 5th Summer School, CEFP 2013, Cluj-Napioca, Revised Selected Papers, number 8606 in LNCS. Springer Verlag, 2014.
  39. R. Debski. High–performance simulation–based algorithms for an alpine ski racer’s trajectory optimization in heterogeneous computer systems. International Journal on Applied Mathematics and Computer Science, 24(3):551– 566, 2014.
  40. M. Drocco, M. Aldinucci, and M. Torquati. A dynamic memory allocator for heterogeneous platforms. In Advanced Computer Architecture and Compilation for High-Performance and Embedded Systems (ACACES) – Poster Abstracts, Fiuggi, Italy, 2014. HiPEAC.
  41. K. Fürlinger, C. Glass, J. Gracia, A. Knüpfer, J. Tao, D. Hünich, K. Idrees, M. Maiterth, Y. Mhedheb, and H. Zhou. Dash: Data structures and algorithms with support for hierarchical locality. In Euro-Par 2014: Parallel Processing Workshops, pages 542–552. Springer, 2014.
  42. M. Goli and H. González-Vélez. N-body computations using skeletal frameworks on multicore CPU/graphics processing unit architectures: an empirical performance evaluation. Concurrency and Computation: Practice and Experience, 26(4):972–986, 2014.
  43. K. Idrees, M. Nachtmann, and C. W. Glass. Evaluation of fastflow technology for real-world application. In Sustained Simulation Performance 2013, pages 77–88. Springer, 2014.
  44. V. Janjic, A. Barwell, and K. Hammond. Using Erlang Skeletons to Parallelise Realistic Medium-Scale Parallel Programs. In Proc. Workshop on
    High-Level Programming for Heterogeneous and Hierarchical Parallel Systems (HLPGPU 2014), 2014.
  45. M. Kazirod, W. Korczynski, and A. Byrski. Agent-oriented computing platform in python. In Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences on, volume 3, pages 365–372, Aug 2014.
  46. M. Kowol, A. Byrski, and M. Kisiel-Dorohinicki. Agent-based evolutionary computing for difficult discrete problems. Procedia Computer Science,
    29(0):1039 – 1047, 2014. 2014 International Conference on Computational Science.
  47. D. Krzywicki, Ł. Faber, A. Byrski, and M. Kisiel-Dorohinicki. Computing agents for decision support systems. Future Generation Computer Systems, 37(0):390 – 400, 2014.
  48. D. Krzywicki, J. Stypka, P. Anielski, Ł. Faber, W. Turek, A. Byrski, and M. Kisiel-Dorohinicki. Generation-free agent-based evolutionary computing. Procedia Computer Science, 29(0):1068 – 1077, 2014. 2014 International Conference on Computational Science.
  49. C. Misale. Accelerating bowtie2 with a lock-less concurrency approach and memory affinity. In M. Aldinucci, D. D’Agostino, and P. Kilpatrick, editors, Proc. of Intl. Euromicro PDP 2014: Parallel Distributed and network-based Processing, Torino, Italy, 2014. IEEE. (Best paper award).
  50. C. Misale, G. Ferrero, M. Torquati, and M. Aldinucci. Sequence alignment tools: one parallel pattern to rule them all? BioMed Research International, 2014.
  51. G. Oláh, D. Horpácsi, T. Kozsik, and M. Tóth. Type inference in Core Erlang to support test data generation. STUD UNIV BABES-BOLYAI SER INFO, LIX(1):201–215, 2014.
  52. A. Secco, I. Uddin, G. Peretti Pezzi, and M. Torquati. Message passing on infiniband RDMA for parallel run-time supports. In M. Aldinucci,
    D. D’Agostino, and P. Kilpatrick, editors, Proc. of Intl. Euromicro PDP 2014: Parallel Distributed and network-based Processing, Torino, Italy, 2014. IEEE.
  53. A. Singh and H. González-Vélez. Hierarchical multi-log cloud-based search engine. In Eighth International Conference on Complex, Intelligent and Software Intensive Systems, CISIS 2014, pages 211–219, Birmingham, UK, July 2014. IEEE.
  54. L. Siwik and R. Dre z  ̇ ewski. Evolutionary multi-modal optimization with the use of multi-objective techniques. In L. Rutkowski, M. Korytkowski,
    R. Scherer, R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors, Artificial Intelligence and Soft Computing, volume 8467 of Lecture Notes in Computer Science, pages 428–439. Springer International Publishing, 2014.
  55. C. Spampinato, I. Kavasidis, M. Aldinucci, C. Pino, D. Giordano, and A. Faro. Discovering biological knowledge by integrating high throughput
    data and scientific literature on the cloud. Concurrency and Computation: Practice and Experience, 26(10):1771–1786, 2014.
  56. M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati. Targeting distributed systems in FastFlow. In Euro-Par 2012: Parallel Processing Workshops, volume 7640 of Lecture Notes in Computer Science, pages 47–56. Springer, 2013.
  57. M. Aldinucci, S. Campa, P. Kilpatrick, F. Tordini, and M. Torquati. An abstract annotation model for skeletons. In FMCO: 10th International Symposium on Formal Methods for Components and Objects–Revised Selected Papers, volume 7542 of Lecture Notes in Computer Science, pages 257–276, Turin, 2013. Springer.
  58. M. Aldinucci, M. Danelutto, P. Kilpatrick, C. Montangero, and L. Semini. Managing adaptivity in parallel systems. In FMCO: 10th International Symposium on Formal Methods for Components and Objects–Revised Selected Papers, volume 7542 of Lecture Notes in Computer Science, pages 199–217, Turin, 2013. Springer.
  59. M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. FastFlow: High-Level and Efficient Streaming on Multi-Core. In S. Pllana and F. Xhafa, editors, Programming Multi-core and Many-core Computing Systems, Parallel and Distributed Computing, chapter 13. Wiley, 2013.
  60. M. Aldinucci, F. Tordini, M. Drocco, M. Torquati, and M. Coppo. Parallel stochastic simulators in system biology: the evolution of the species. In
    Proc. of Intl. Euromicro PDP 2013: Parallel Distributed and network-based Processing, Belfast, Nothern Ireland, U.K., Feb. 2013. IEEE.
  61. T. Baumann and J. Gracia. Cudagrind: Memory-usage checking for cuda. In  A. Knupfer,, J. Gracia, W. E. Nagel, and M. M. Resch, editors, Tools for High Performance Computing 2013, pages 67–78. Springer International Publishing, 2014.
  62. T. M. Baumann and J. Gracia. Cudagrind: A valgrind extension for CUDA. In M. Bader, A. Bode, H. Bungartz, M. Gerndt, G. R. Joubert, and F. J. Peters, editors, Parallel Computing: Accelerating Computational Science and Engineering (CSE), Proceedings of the International Conference on Parallel Computing, ParCo 2013, 10-13 September 2013, Garching (near Munich), Germany, volume 25 of Advances in Parallel Computing, pages 763–772. IOS Press, 2013.
  63. S. Brinkmann and J. Gracia. Cppss – a C++ library for efficient task parallelism. In Proc. Third International Conf. on Advanced Communications and Computation (INFOCOMP 2013), Lisbon, Portugal, Lisbon, Nov. 2013.
  64. C. Brown, K. Hammond, M. Danelutto, P. Kilpatrick, H. Schöner, and T. Breddin. Paraphrasing: Generating parallel programs using refactoring.
    In FMCO: 10th International Symposium on Formal Methods for Components and Objects–Revised Selected Papers, volume 7542 of Lecture Notes in Computer Science, pages 237–256, Turin, 2013. Springer.
  65. D. Buono, M. Danelutto, S. Lametti, and M. Torquati. Parallel patterns for general purpose many-core. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro International Conference on, pages 131–139. IEEE, 2013.
  66. S. Campa, M. Danelutto, H. González-Vélez, A. M. Popescu, and M. Torquati. Towards the deployment of FastFlow on distributed virtual architectures. In Proc. of ECMS 2013, pages 518–524, Alesund, 2013.
  67. M. Danelutto and M. Torquati. A RISC building block set for structured parallel programming. In Proc. PDP 2013: 21st Euromicro International
    Conference on Parallel, Distributed and Network-Based Processing, pages 46–50. IEEE, 2013.
  68. H. Ferreiro, V. Janjic, L. M. Castro, and K. Hammond. Repeating history: Execution replay for parallel Haskell programs. In Trends in Functional Programming, volume 7829 of Lecture Notes in Computer Science, pages 231-246, St. Andrews, June 2013. Springer.
  69. M. T. Garba, H. González-Vélez, and D. L. Roach. GPU acceleration for hermitian eigensystems. T. Computational Collective Intelligence, 10:150–161, 2013.
  70. M. Goli and H. González-Vélez. Heterogeneous algorithmic skeletons for fast flow with seamless coordination over hybrid architectures. In PDP: 21st Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pages 148–156, Belfast, 2013. IEEE.
  71. M. Goli and H. González-Vélez. Heterogeneous algorithmic skeletons for fast flow with seamless coordination over hybrid architectures. In PDP: 21st Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pages 148–156, Belfast, 2013.
  72. M. Goli, J. McCall, C. Brown, V. Janjic, and K. Hammond. Mapping parallel programs to heterogeneous cpu/gpu architectures using a monte carlo tree search. In Evolutionary Computation (CEC), 2013 IEEE Congress on, pages 2932–2939. IEEE, 2013.
  73. K. Hammond, M. Aldinucci, C. Brown, F. Cesarini, M. Danelutto, H. González-Vélez, P. Kilpatrick, R. Keller, M. Rossbory, and G. Shainer.
    The ParaPhrase project: Parallel patterns for adaptive heterogeneous multi-core systems. In FMCO: 10th International Symposium on Formal Methods for Components and Objects–Revised Selected Papers, volume 7542 of Lecture Notes in Computer Science, pages 218–236, Turin, 2013. Springer.
  74. K. Idrees, C. Niethammer, A. Esposito, and C. W. Glass. Performance evaluation of unified parallel C for molecular dynamics. In 7th International Conference on PGAS Programming Models, page 237, Edinburgh, 2013. EPCC.
  75. V. Janjic, C. Brown, M. Neunhoeffer, K. Hammond, S. Linton, and H.-W. Loidl. Space exploration using parallel orbits: a study in parallel symbolic computing. In International Conference on Parallel Computing (ParCo 2013), 2013.
  76. S. Linton, K. Hammond, A. Konovalov, C. Brown, P. W. Trinder, H.-W. Loidl, P. Horn, and D. Roozemond. Easy composition of symbolic computation software using scscp: A new lingua franca for symbolic computation. Journal of Symbolic Computation, 49:95–119, 2013.
  77. C. Misale, M. Aldinucci, and M. Torquati. Memory affinity in multi-threading: the bowtie2 case study. In Advanced Computer Architecture and Compilation for High-Performance and Embedded Systems (ACACES), Fiuggi, 2013. Poster.
  78. T. Serban, M. Danelutto, and P. Kilpatrick. Autonomic scheduling of tasks from data parallel patterns to CPU/GPU core mixes. In High Performance Computing and Simulation (HPCS), 2013 International Conference on, pages 72–79. IEEE, 2013.
  79. P. Trinder, K. Hammond, M. Cole, G. Michaelson, and H.-W. Loidl. Resource Analyses for Parallel and Distributed Coordination. Concurrency: Practice and Experience, 25(3):309–348, 2013.
  80. M. Aldinucci, M. Danelutto, L. Anardu, M. Torquati, and P. Kilpatrick. Parallel patterns + macro data flow for multi-core programming. In Proc. of Intl. Euromicro PDP 2012: Parallel Distributed and network-based Processing, pages 27–36, Garching, Germany, Feb. 2012. IEEE.
  81. M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati. An efficient unbounded lock-free queue for multi-core systems. In Proc. Euro-Par 2012: 18th Intl. Conf. on Parallel Processing, volume 7484 of LNCS, pages 662–673, Rhodes Island, Greece, Aug. 2012. Springer.
  82. M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. Targeting Heterogeneous Architectures via Macro Data Flow. Parallel Processing Letters, 22(2), June 2012.
  83. M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. Targeting heterogeneous architectures via macro data flow. In Proc. HLPGPU 2012: Intl. Workshop on High-level Programming for Heterogeneous and Hierarchical Parallel Systems, pages 1–6. HiPEAC, Jan. 2012.
  84. M. Aldinucci, C. Spampinato, M. Drocco, M. Torquati, and S. Palazzo. A parallel edge preserving algorithm for salt and pepper image denoising. In Image Processing Theory, Tools and Applications (IPTA), 2012 3rd International Conference on, pages 97–104. IEEE, 2012.
  85. C. Brown, K. Hammond, M. Danelutto, and P. Kilpatrick. A language-independent parallel refactoring framework. In Proc. WRT 2012: Fifth Workshop on Refactoring Tools, pages 54–58, New York, NY, USA, 2012. ACM.
  86. M. Danelutto and R. D. Cosmo. A Minimal Disruption Skeleton Experiment: Seamless Map & Reduce Embedding in OCaml. Procedia Computer Science, 9(0):1837 – 1846, 2012. Proc. ICCS 2012: International Conference on Computational Science.
  87. M. T. Garba and H. González-Vélez. Asymptotic peak utilisation in heterogeneous parallel CPU/GPU pipelines: a decentralised queue monitoring strategy. Parallel Processing Letters, 22(2):1240008[13 pages], 2012.
  88. M. Goli, M. T. Garba, and H. González-Vélez. Streaming dynamic coarse-grained CPU/GPU workloads with heterogeneous pipelines in FastFlow. In HPCC: 14th IEEE International Conference on High Performance Computing and Communication, pages 445–452, Liverpool, 2012. IEEE.
  89. J. Gracia, C. Niethammer, M. Hasert, S. Brinkmann, R. Keller, and C. Glass. Hybrid MPI/StarSs – a case study. In Proc. ISPA 2012: 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, July 10-13, Madrid, Spain, pages 48–55, 2012.
  90. V. Janjic and K. Hammond. Using Load Information in Work-Stealing on Distributed Systems with Non-Uniform Communication Latencies. In Proc. EuroPar 2012: 2012 International European Conference on Parallel and Distributed Computing, 2012.
  91. C. Niethammer, C. Glass, and J. Gracia. Avoiding Serialization Effects in Data-dependency Aware Task Parallel Algorithms for Spatial Decomposition. In Proc. ISPA 2012: 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, July 10-13 2012, Madrid, Spain, pages 743–748, 2012.
  92. H. Simões, P. Vasconcelos, M. Florido, S. Jost, and K. Hammond. Automatic amortised analysis of dynamic memory allocation for lazy functional programs. In Proceedings of the 17th ACM SIGPLAN international conference on Functional programming, pages 165–176. ACM, 2012.
  93. V. Subotic, S. Brinkmann, V. Marjanovic, R. Badia, J. Gracia, C. Niethammer, E. Ayguade, J. Labarta, and M. Valero. Programmability and portability for Exascale: Top Down Programming Methodology and Tools with StarSs. Journal of Computational Science, 2012.
  94. F. Tordini, M. Aldinucci, and M. Torquati. High-level lock-less programming for multicore. In Advanced Computer Architecture and Compilation for High-Performance and Embedded Systems (ACACES) – Poster Abstracts, Fiuggi, Italy, 2012. HiPEAC.
  95. S. Wesner, J. Gracia, and C. Glass. How to Keep Pace with Fast-Changing Hardware. In Proc. SIMULATION-2012, May 16-18, Kiev, Ukraine, 2012.